

DOI: 10.1002/ange.201500261 Deutsche Ausgabe: Internationale Ausgabe: DOI: 10.1002/anie.201500261

Direct Observation of Ca²⁺-Induced Calmodulin Conformational Transitions in Intact Xenopus laevis Oocytes by 19F NMR Spectroscopy**

Yansheng Ye, Xiaoli Liu, Guohua Xu, Maili Liu, and Conggang Li*

Abstract: The Ca^{2+} -mediated conformational transition of the protein calmodulin (CaM) is essential to a variety of signal transduction pathways. Whether the transition in living cells is similar to that observed in buffer is not known. Here, we report the direct observation by 19FNMR spectroscopy of the transition of the Ca2+-free and -bound forms in Xenopus laevis oocytes at different Ca²⁺ levels. We find that the Ca²⁺bound CaM population increased greatly upon binding the target protein myosin light-chain kinase (MLCK) at the same Ca²⁺ level. Paramagnetic NMR spectroscopy was also exploited for the first time to obtain long-range structural constraints in cells. Our study shows that 19F NMR spectroscopy can be used to obtain long-range structural constraints in living eukaryotic cells and paves the way for quantification of protein binding constants.

Calmodulin (CaM), an intracellular Ca²⁺ sensor protein with two Ca²⁺ binding domains, is involved in many Ca²⁺-mediated signaling pathways. In smooth muscle, Ca²⁺ binds CaM, thereby inducing a conformational change that enables binding to myosin light-chain kinase (MLCK). This binding activates the kinase, which is key to muscle contraction.[1] Studies in buffer show that Ca²⁺-bound CaM (Ca-CaM) binds various cellular targets with dissociation constants (K_d) ranging from nm to µm (Figure 1).[2] CaM signaling may be regulated by these different affinities, but whether the conformational transitions, binding affinities, and structures in cells are similar to those in buffer is not known, because direct experimental verification in living cells is challenging.

[*] Y. Ye, X. Liu, Dr. G. Xu, Prof. Dr. M. Liu, Prof. Dr. C. Li Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences

Wuhan 430071 (China)

E-mail: conggangli@wipm.ac.cn

Graduate University of Chinese Academy of Sciences Beijing 100049 (China)

[**] This work was supported by the Ministry of Science and Technology of China (grant 2013CB910200), the 1000 Young Talents Program, and National Natural Sciences Foundation of China (grants 21173258, 21120102038, and 21221064).

Supporting information for this article (sample preparation, NMR) experimental details, ¹⁵N-¹H HSQC spectra, and ¹⁹F NMR spectra) is available on the WWW under http://dx.doi.org/10.1002/anie. 201500261.

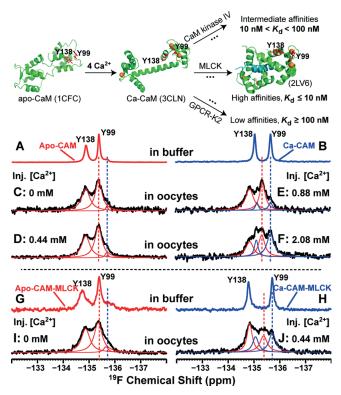


Figure 1. Conformational transitions of CaM in the presence of Ca²⁺ and cellular targets with different Ca2+ affinities (PDB_ID: 1CFC for apo-CaM, 3CLN for Ca-CaM, and 2LV6 for the CaM MLCK complex). The location of the ¹⁹F labels at Y99 and Y138 are shown. Onedimensional ¹⁹F NMR spectra of 3FY-labeled Ca²⁺-free (apo-CaM, red; A) and Ca²⁺-bound (Ca-CaM, blue; B) in buffer and in Xenopus oocytes injected with \approx 20 nL of 5 mm apo-CaM in the presence of 0 (C), 22 (D), 44 (E), and 104 (F) mm Ca^{2+} per oocyte. The injected final intracellular Ca²⁺ concentrations are estimated to be 0, 0.44, 0.88, and 2.08 mm, as indicated. One-dimensional spectra of 3FY-labeled Ca²⁺free (apo-) CaM-MLCK (red) in buffer (G) and in oocytes (I), and Ca²⁺bound (Ca-) CaM-MLCK in buffer (H) and in oocytes (J). The red and blue dashed lines indicate chemical shifts from the buffer data. The peaks in the oocyte spectra were fitted according to the buffer data for apo-Cam, Ca-CaM, or CaM-MLCK.

In-cell NMR spectroscopy can monitor protein conformational transitions in living cells at atomic resolution.[3] For example, ¹⁵N-¹H HSQC spectra have been used to study the maturation of superoxide dismutase in live human cells.[3b] Nevertheless, it is known that most globular proteins yield low-quality (or even undetectable) in-cell ¹⁵N-¹H HSQC spectra because the high cellular viscosity and ubiquitous weak interactions in cells (compared to buffer) lead to broad

signals.^[4] The ¹⁵N-¹H HSQC spectrum of CaM in Xenopus oocytes displays broad, unresolved cross-peaks, which makes it impossible to distinguish conformational states (see Figure S1 in the Supporting Information). ¹⁹F NMR spectroscopy has been used to show that CaM in Escherichia coli mainly exists in the Ca2+-free apo form. [5] We turned to Xenopus laevis oocytes, a model eukaryotic cell system, to study the CaM conformational transition and CaM function because the Ca^{2+} level is difficult to manipulate in E. coli and because CaM is native to eukaryotes.

To monitor the conformational transition at different Ca²⁺ concentrations in oocytes, Y99 and Y138 were replaced with 3-fluorotyrosine (3FY). As shown in Figure 1 A,B, the ¹⁹F NMR spectra of the Ca²⁺-free (apo-CaM) and Ca²⁺-bound (Ca-CaM) forms show distinct shifts in buffer, consistent with previous reports.^[6] Resonance assignments were made by sitedirected mutagenesis (see Figure S2 in the Supporting Information). We then injected approximately 20 nL of 5 mm apo-CaM along with increasing amounts of Ca²⁺. The range of Ca²⁺ concentrations is 0 to 2 mm, assuming an oocyte volume of 1 µL. Spectra were then recorded as a function of the Ca²⁺ concentration (Figure 1 C-F). The resonances in cells are broader than those in dilute solution. The conformational state of CaM in cells was inferred by comparing the incell spectrum to that obtained in buffer. The in-cell signals were deconvoluted using the buffer data to yield the populations of apo- (red) and Ca-CaM (blue).

When apo-CaM was injected, the ¹⁹F NMR spectrum (Figure 1C) of the apo form is observed in cells, which suggests that the concentration of free Ca²⁺ is very low in oocytes, consistent with reports.^[4a] The level of the apo form did not change over the course of 12 h. However, the Cabound form was observed after 18 h (see Figure S3 in the Supporting Information), which may be due to Ca2+ bursts from cell stress induced after such a long time in the NMR tube, as reported for HeLa cells. [3d]

To our surprise, when Ca²⁺-bound CaM (final intracellular Ca²⁺ concentration 0.44 mм) was injected, the ¹⁹F NMR spectrum (Figure 1D) showed only the apo form, thus suggesting that Ca²⁺ was stripped from the protein after injection. We speculate that the Ca2+ loss may be due to competitive binding of some cell components. To address this possibility, we conducted competitive binding experiments in buffer between Ca-CaM and Mg²⁺ (the most abundant divalent cation in cells), membrane components, nucleic acids from E. coli and oocyte extracts (see Figure S4 in the Supporting Information). None of these conditions transformed Ca-CaM into apo-CaM. This result further indicates that Ca²⁺ is strictly regulated in living cells, possibly by Ca²⁺ pumps and exchangers.^[7] We then increased the injected final intracellular Ca²⁺ concentration to 0.88 mm. The resulting spectrum (Figure 1E) indicated the presence of Ca-CaM, with the peak fitting indicating a molar ratio of apo-CaM to Ca-CaM of approximately 6:1. When the injected intracellular Ca2+ concentration was increased to 2 mm, the spectrum (Figure 1F) showed an increased population of Ca-CaM (molar ratio of apo-CaM to Ca-CaM of \approx 1:1). These observations suggest that the protein can be saturated at high intracellular Ca²⁺ concentrations.

To test ideas about target activation, we injected the CaM-MLCK complex in the absence and presence of Ca²⁺ (Figure 1 I,J). The complex was constructed as described.[8] Briefly, 26 residues from the MLCK binding peptide were inserted into the C-terminus of CaM. This construct has a similar response to Ca²⁺ as CaM with an unattached MLCK peptide. [8] Figure 1 G–J shows the ¹⁹F NMR spectra of apoand Ca-CaM-MLCK in buffer and oocytes. Similar to what we observed for CaM, the chemical shift is sensitive to the apo and Ca form of the complex in buffer. Injected apo-CaM-MLCK remains in the apo form after injection (Figure 1 I). In contrast to what we observe with injected CaM (Figure 1D), both apo- and Ca-CaM-MLCK are present at a final intracellular injected Ca²⁺ concentration of 0.44 mm (Figure 1 J, ca. 1:1 molar ratio of apo- to Ca-CaM-MLCK). In buffer, the Ca²⁺ K_d values for CaM and CaM-MLCK differ by about two orders of magnitude $(7.2 \times 10^{-6} \text{ M} \text{ and } 2.6 \times 10^{-8} \text{ M}, \text{ respec-}$ tively).[8] Our observation in cells confirms the higher Ca²⁺ affinity of CaM upon binding to MLCK, one of the cellular target proteins. This observation means MLCK can be activated at lower Ca2+ concentrations in cells, thereby supporting the idea that target activity may be regulated in cells by differential affinity for CaM at different Ca²⁺ levels.

It has been reported that some proteins adopt a more compact structure in crowded conditions that mimic the intracellular environment. [4e,9] To address whether the structure of Ca-CaM-MLCK in living cells is the same as it is in buffer, we used pseudocontact shifts (PCSs) to derive structural information about Ca-CaM-MLCK in Xenopus oocytes. In buffer, PCSs are a well-established tool for obtaining long-range structural constraints.^[10] PCSs provide information about the distance and orientation between an observed nucleus and a paramagnetic center. The CaM variant N60D has higher affinity for lanthanide ions at the second Ca2+ binding site, so we used the paramagnetic lanthanide ion Tb3+ to induce PCSs, which were measured by calculating the difference in the shift between the paramagnetic N60D (CaTb)_N(Ca₂)_CCaM and the diamagnetic N60D (Ca₂)_N(Ca₂)_CCaM.^[11] We used the 3FY-labeled N60D variant to obtain 19F PCSs because the 15N-1H HSQC spectrum of Ca-CaM-MLCK is poorly resolved in oocytes (see Figure S5 in the Supporting Information). As shown in Figure 2 A,B, the ¹⁹F NMR spectra of the 3FY-labeled wildtype and N60D variant are the same, which suggests that the mutation has a minimal structural effect. Two more resonances appear in the presence of 0.7 equivalents of Tb³⁺, and the population of this species, (CaTb)_N(Ca2)_CCaM, is approximately equal to the population of (Ca2)_N(Ca2)_CCaM. We calculated a PCS of 0.32 ppm for Y138, and 0.13 ppm for Y99 (Figure 2C). Inspection of the crystal structure reveals that the labeled position in Y138 is much closer (29 Å) to the Tb³⁺ ion than is Y99 (40 Å). Thus, the PCS for Y138 should be larger than that for Y99, consistent with our observation. When additional Tb³⁺ ions were added (Figure 2D), the concentration of (CaTb)_N(Ca2)_CCaM increased, thus confirming the assignment of the diamagnetic and paramagnetic forms. We then injected (CaTb)_N(Ca2)_CCaM-MLCK into oocytes and observed a PCS almost equal to that observed in buffer (Figure 2E,F). As a consequence of the limited

5419

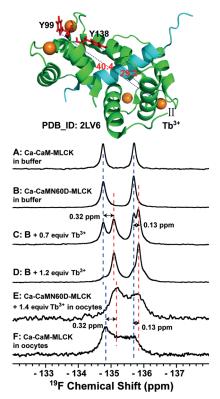


Figure 2. One-dimensional ¹⁹F NMR spectra of Ca-CaM-MLCK (A), Ca-CaMN60D-MLCK (B), and Ca-CaMN60D-MLCK in the presence of 0.7 equiv of Tb^{3+} (C), 1.2 equiv of Tb^{3+} (D) in buffer, or in the presence of 1.4 equiv of Tb3+ in Xenopus oocytes (E, a molar ratio of Ca2+ to CaMN60D-MLCK of 5:1), and diamagnetic Ca-CaM-MLCK in oocytes (F). The Ca-CaMN60D-MLCK model is shown at the top (PDB_ID: 2LV6). The distances between the ¹⁹F nuclei and the paramagnetic center (II, Tb³⁺) are indicated.

number of PCS values obtained here, it is difficult to draw a conclusion about cellular effects on the whole protein structure. Nevertheless, our 19F PCS data show that it should be possible to obtain long-range structural constraints by including more ¹⁹F labeling sites.

In summary, we have, for the first time, directly observed the CaM conformational transition in intact Xenopus oocytes by using ¹⁹F NMR spectroscopy. Under physiological conditions, most CaM is in the apo from, and Ca-CaM only appears at high Ca²⁺ levels. The affinity of Ca²⁺ for CaM is enhanced by MLCK in cells, which suggests that MLCK can be actived at lower Ca²⁺ concentration, thereby resulting in further signal transduction. Our observations support the idea that activation of the signaling pathway is regulated by the relative binding affinity of CaM targets at different Ca²⁺ concentrations. Our data also show that in-cell ¹⁹F PCSs can yield longrange structural constraints. We believe the 19F method demonstrated here with CaM can be applied to other cellular signal transduction systems in living cells.

Keywords: calmodulin · fluorine · NMR spectroscopy · protein conformation · signal transduction

How to cite: Angew. Chem. Int. Ed. 2015, 54, 5328-5330 Angew. Chem. 2015, 127, 5418-5420

- [1] a) D. Chin, A. R. Means, Trends Cell Biol. 2000, 10, 322-328; b) K. E. Kamm, J. T. Stull, J. Biol. Chem. 2001, 276, 4527-4530; c) N. Gao, J. Huang, W. He, M. Zhu, K. E. Kamm, J. T. Stull, J. Biol. Chem. 2013, 288, 7596-7605.
- A. Persechini, B. Cronk, J. Biol. Chem. 1999, 274, 6827-6830.
- [3] a) S. Y. Rhieu, A. A. Urbas, D. W. Bearden, J. P. Marino, K. A. Lippa, V. Reipa, Angew. Chem. Int. Ed. 2014, 53, 447-450; Angew. Chem. 2014, 126, 457-460; b) E. Luchinat, L. Barbieri, J. T. Rubino, T. Kozyreva, F. Cantini, L. Banci, Nat. Commun. 2014, 5, 5502; c) P. Selenko, D. P. Frueh, S. J. Elsaesser, W. Haas, S. P. Gygi, G. Wagner, Nat. Struct. Mol. Biol. 2008, 15, 321 – 329; d) D. S. Hembram, T. Haremaki, J. Hamatsu, J. Inoue, H. Kamoshida, T. Ikeya, M. Mishima, T. Mikawa, N. Hayashi, M. Shirakawa, Y. Ito, Biochem. Biophys. Res. Commun. 2013, 438, 653-659; e) J. A. Hubbard, L. K. MacLachlan, G. W. King, J. J. Jones, A. P. Fosberry, Mol. Microbiol. 2003, 49, 1191-1200.
- [4] a) T. Sakai, H. Tochio, T. Tenno, Y. Ito, T. Kokubo, H. Hiroaki, M. Shirakawa, J. Biomol. NMR 2006, 36, 179-188; b) Y. Ye, X. Liu, Z. Zhang, Q. Wu, B. Jiang, L. Jiang, X. Zhang, M. Liu, G. J. Pielak, C. Li, Chem. Eur. J. 2013, 19, 12705-12710; c) Q. Wang, A. Zhuravleva, L. M. Gierasch, Biochemistry 2011, 50, 9225-9236; d) Z. Serber, R. Ledwidge, S. M. Miller, V. Dötsch, J. Am. Chem. Soc. 2001, 123, 8895-8901; e) Q. Wang, K. C. Liang, A. Czader, M. N. Waxham, M. S. Cheung, PLoS Comput. Biol. 2011, 7, e1002114; f) C. Kyne, B. Ruhle, V. W. Gautier, P. B. Crowley, Protein Sci. 2015, 24, 310-318; g) P. B. Crowley, E. Chow, T. Papkovskaia, ChemBioChem 2011, 12, 1043-1048.
- [5] G. Xu, Y. Ye, X. Liu, S. Cao, Q. Wu, K. Cheng, M. Liu, G. J. Pielak, C. Li, *Biochemistry* **2014**, *53*, 1971 – 1981.
- [6] a) J. L. Kitevski-LeBlanc, F. Evanics, R. S. Prosser, J. Biomol. NMR 2009, 45, 255-264; b) J. L. Kitevski-LeBlanc, M. S. Al-Abdul-Wahid, R. S. Prosser, J. Am. Chem. Soc. 2009, 131, 2054-2055
- [7] D. E. Clapham, Cell 2007, 131, 1047-1058.
- [8] T. Porumb, P. Yau, T. S. Harvey, M. Ikura, Protein Eng. 1994, 7, 109 - 115.
- [9] a) A. Dhar, A. Samiotakis, S. Ebbinghaus, L. Nienhaus, D. Homouz, M. Gruebele, M. S. Cheung, Proc. Natl. Acad. Sci. USA 2010, 107, 17586-17591; b) B. Akabayov, S. R. Akabayov, S. J. Lee, G. Wagner, C. C. Richardson, Nat. Commun. 2013, 4, 1615; c) D. Homouz, H. Sanabria, M. N. Waxham, M. S. Cheung, J. Mol. Biol. 2009, 391, 933-943.
- [10] G. Pintacuda, M. John, X. C. Su, G. Otting, Acc. Chem. Res. **2007**, 40, 206-212.
- [11] a) I. Bertini, I. Gelis, N. Katsaros, C. Luchinat, A. Provenzani, Biochemistry 2003, 42, 8011-8021; b) I. Bertini, C. Del Bianco, I. Gelis, N. Katsaros, C. Luchinat, G. Parigi, M. Peana, A. Provenzani, M. A. Zoroddu, Proc. Natl. Acad. Sci. USA 2004, 101, 6841-6846.

Received: January 12, 2015 Published online: March 5, 2015

5420